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1. Introduction 
Early theories of unimolecular reaction rates have considered 
the role of overall molecular rotations by using two ostensibly 
different approaches ; the results of both approaches are identi- 
cal, however. 

Eyring1n2& postulated that all degrees of freedom of the 
reactants are in thermodynamic equilibrium with those of the 
activated complex (except that special considerations attach 
to that degree of freedom associated with the reaction co- 
ordinate). In this simple formulation, and without specific 
considerat of the conservation of angular momentum, rota- 
tionq contribute a factor to the high-pressure specific rate con- 
stant, kmuni, for a unimolecular reaction which is the ratio of 
the square root of the moments of inertia of the rotational 
partition functions of the activated complex and the molecule, 
i.e., (ZA+ZB+ZO+/ZAZBZC)’”. Another approach that was applied 
even earlier to a diatomic approximation for unimolecular 
decomposition reactions is that of Rice and Gershinowitz 
(RG).8 They pointed out that angular momentum conserva- 
tion requires that the rotational quantum number does not 
change when the “activated complex” configuration at the top 

* Work supported by the National Science Foundation. 
(1) H. Eyring, J.  Chem. Phys., 3,107 (1935). 
(2) S. Glrfpone, K. Laidler, and H. Eyring “The Theory of Rate 
Processes, McGraw-Hill Book Co.,  Inc., Nkw York, N. Y., 1941: 
(a)pp 10-16; (b)p 220,260; (c)p 213; (d)p 192. 
(3) 0. K. Rice and H. Gershinowitz, J .  Chem. Phys., 2,853 (1934). 

of a potential barrier is reached from the excited molecule. 
If the product of the moments of inertia of the complex is 
larger than that of the molecule, then the centrifugal energy of 
the rotating molecule will effectively reduce the critical 
threshold vibrational energy and facilitate reaction. R G  used 
a rigid rotor-activated complex with an (unspecified) fixed 
configuration. The averaged centrifugal effect enhances the 
rate constant by a factor which is again the square root of the 
moment of inertia ratio. 

Marcus46a later gave a more detailed formulation of uni- 
molecular reaction rates for the general pressure case in which 
the existence of centrifugal effects was formally mentioned in 
the context of the treatment of RG;  however, the development 
did not lead to a correct formulation of the low-pressure limit- 
ing rate constant. Recently, MarcusSC modified the treatment 
to account explicitly for the effect of rotations on the micro- 
scopic rate constant, kEJ, from which an appropriate form 
for the low-pressure limiting rate constant, kouni, may be ob- 
tained; the high-pressure limiting expression was again re- 
covered. The original theory of Eyring was not applied to the 
nonequilibrium unimolecular low-pressure region. 

One matter regarding nomenclature may be mentioned. 
Marcus applied the term adiabatic to degrees of freedom char- 
acterized by a constant quantum number during the course 
of reaction in its mechanical sense. This has unequivocal sig- 
nificance for translational degrees of freedom and for rota- 
tions for which the moments of inertia remain constant 
throughout the course of reaction. The term is not used in 
its thermodynamic connotation; in the present application, 
rotational energy and vibrational energy are admixed and a 
total rotation-vibration potential expression is employed. 
However, the total number of relevant complexions of the 
system at the appropriate total energy of the active degrees of 
freedom are exclusively internal in nature. Since contribu- 
tions of internal degrees of freedom to the total angular mo- 
mentum, where relevant, are neglected, an overestimate of the 
vibrational-internal rotational density of states results in this 
treatment. 

Centrifugal effects have also been included in the treatment 
of recombination reactions. Again, different approaches have 
led to agreement. The collision theory has been applied to the 
rate of bimolecular radical-radical687 and ion-molecule6.8 
reactions; it is assumed that there is no activation energy for 

(4) R.  A.  Marcus and 0. K; Rice, J .  Phys. Colloid Chem., 55, 894 
(1951). 
( 5 )  (a) R .  A. Marcus J .  Chem. Phys., 20,359 (1952). (b) G. M. Wieder 
and R. A. Marcus, ;bid., 37, 1835 (1962); (c) R. A.’Marcus, ibid., 43, 
2658 (1965). 
(6) K. Yang and T. Ree, ibid., 35, 588 (1961). 
(7) B. H. Mahan, ibid., 32,362(1960). 
(8) G. Gioumousis and D. P. Stevenson, ibid., 29,294 (1958). 
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the rotationless (J = 0) case in both reactions. The results of 
these treatments agree with the equilibrium theory treatments 
of Eyring and coworkersZb~9~ 10 and of Gorin.11.12 

Some misunderstanding and errors have developed in recent 
papers regarding the computation of appropriate averaged 
moments of inertia and the occurrence, treatment, and mag- 
nitude of the centrifugal effects. We present here an evaluation 
and summary of the use and applications that have been made 
of the theory thus far and demonstrate the utility of Marcus’ 
expression for centrifugal effectssc in the general pressure re- 
gion. Some average rotational energies are calculated for the 
activated complex and molecule, particularly the energy of 
the rotationally hot molecule formed from a bimolecular as- 
sociation. 

I / .  Unimolecular Decomposition 
at High Pressure 

A. CASE I. LARGE BARRIER FOR REVERSE 
ASSOCIATION REACTION 

We summarize a treatment based on that of RG. An inter- 
molecular potential of the form shown in Figure 1 is used. 

1 
V(r) 

r-- 
Figure 1. Case I potential energy diagram; the value of rm is fixed 
for all rotational states. 

Since one of the three moments of inertia tends to be invariant 
during reaction, the simplifying approximation is made that 
the molecule can be treated as a diatomic molecule, the two 
dissociating fragments being represented as mass centers. 
The energy of rotation is 

EJ(r) = J(J + l)h2/2pr2 (1) 

where J(J + 1)h2 is the square of the total angular momentum, 
p is the reduced mass, and r is the separation between the 
centers of mass. This rotational or centrifugal energy is added 
to the potential energy to obtain an effective potential Veff, 
where 

ve&) = V(r) + E&) (2) 

(9) H. Eyring, J. 0. Hirschfelder, and 13. S. Taylor, J .  Chem. Phys., 4, 
479 (1936). 
(10) H. Eyring, H. Gershinowitz, and C. Sun, ibid., 3,786 (1935). 
(11) 
(12) (a) E. Gorin, W. Kauzmann, J. Walter, and H. Eyring, J.  Chem, 
Phys., 7, 633 (1939). (b) For a critique of the Gorin model see H. S. 
Johnston and P. Goldfinger, ibid., 37,700 (1962). 

Gorin, Acta Physicochim. URSS, 9,691 (1938). 

The zero of energy of the system is taken at r -+ w . The criti- 
cal internal energy, EO, for reaction of a nonrotating molecule 
(J = 0)is 

Eo = V(r,) - V(re) (3) 

For a rotating molecule in rotational quantum state J, the 
critical internal energy is reduced by the difference in rota- 
tional energy of the molecule at r = re and the activated com- 
plex at r = r,. 

Eo(J) = V f d r d  - Veff(re) = EO + 

In this treatment, the value of rm, the separation 
at the top of the barrier, is considered fixed (at some ap- 
propriate average value). independent of J .  Hence, Eo(.T) < 
EO. It is important to note that for this model to be realistically 
apt an appropriate condition is that V(rm) >> EJ(rm), or else 
I+ is strongly dependent on J. 

If the rate constant for J = 0 is designated k(O), then the 
rateconstant k(J)forJ> Ois 

The average rate constant k over allJ’s is 

where 

and 

On changing the sum to an integral and integrating, we have 

k/k(O) = Zr+/Z, = rm2/re2 (8) 

Thus the rate constant is enhanced by the ratio of the rigid 
rotor partition functions for the complex and the molecule. 
The result is the same as that which would be obtained by in- 
voking the equilibrium assumption of ART theory. 

Although the approximate treatment of RG can be (and 
was) applied to the case of low or vanishing barriers, it was 
noted above at the average potential approximation, with 
fixed r,, is most closely realized in systems where the potential 
barrier is large for he reverse process and therefore only 
modestly dependent on J. In such a case, bond stretching at 
the top of the barrier will in general correspond to the lesser 
end of possible range of rm2/re2 values and centrifugal energy 
effects tend to be small. One example of such a reaction is the 
dissociation of 3,4,4-trimethylpenty1-2 radical l8 

c c  C 
I I  I 

I 
C 

c-c-c-Lc + C - C .  + c-c=c-c 

E,,,,, - 12 kcal mole-’ 
b 

(13) CI W. Larson, Ph.D. Thesis, University of Washington, Seattle, 
1969. 
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B. CASE 11. NO BARRIER FOR REVERSE 
ASSOCIATION REACTION 

For unimolecular decomposition reactions whose reverse 
reaction has “no” barrier to recombination, e.g., radical- 
radical reactions and ion-molecule reactions, the configuration 
of the activated complex depends strongly on the rotational 
quantum state. For a nonrotating molecule there is no hump 
between the reactant and product and the activated complex 
lies at an infinite separation between the two fragments.l0 For 
a rotating molecule, the centrifugal potential is superimposed 
upon the attractive potential and will usually produce a hump 
which is the position of the activated complex. In contrast to 
case I, the value of r, depends strongly on J (Figure 2). For an 
attractive potential of the form 

V(r) = -A/r* (s  > 2) (9) 

the position of the hump can be easily found, as was done by 
Gorin12v and by Eyring, Hirschfelder, and T a y l ~ r , ~  follow- 
ing the method of Eyring, Gershinowitz, and Sun. lo The re- 
pulsive part of the total intermolecular potential is negligible 
at the relatively large distances of the complex and can be ig- 
nored. Again the molecule is treated as a diatomic molecule 
and the effective potential is given by eq 2. The top of the 
hump occurs at an interatomic distance, r,, where 

dVeff(rm)/dr = 0 (10) 

d2Ver+(r3/b2 < 0 (11) 

and 

On solving for Verr(rm) 

In the absolute rate theory treatment, a pseudo-rotational par- 
tition function for the above energy level scheme was defined 
899-12  

0)  

zr+ = (W + 1) exp[- Verr(r,)/kT] (13) 
J - 0  

As was pointed out?’ the energy levels, Veff(rm), are not those 
for a conventional rotor, but eq 13 is a useful form. 

Equation 13 can be integrated to give 

Equation 14 has the form of a rigid-rotor partition function 
if we identify69 10, I4 the quantity in braces with the square of 
the apparent distance between the centers of masses, i.e., define 

The double angular brackets are used to distinguish between 
(rmz),  the average square of the distance, and ((rm2)), the ap- 
parent square of the distance.6110p14 This distinction is im- 
portant when a ratio of the rotational partition functions of 

‘a ‘rn 

r- 

Figure 2. Case I1 potential energy diagram; the value of rm de- 
pends on the rotational state J.  

the activated complex Z,+/Z, to the molecule is expressed as a 
ratio of the square of the appropriate distances. 

Zr+jZr = ((rm2))/re2 (16) 

Tschuikow-Roux15 has calculated yet another quantity, 
(rm), the average distance between the centers of masses of 
the activated complex, which he uses to describe the activated 
complex. But he inappropriately uses (rm)’ to calculate Zr+/Zr 
instead of ((rm2)), as in eq 16. The error in using (rm)z is shown 
below for s = 6, i.e., for a London dispersion force between 
particles 

(rm)2 = l4714(2A/kT)’/’ (17) 

((rm2}) = 1.354(2AjkT)‘/’ (18) 

The use of (r,,JZ leads to an error of - 2 5 x  in the rate con- 
stant. 

The complete absolute rate theory expression for the uN- 

molecular rate constant is2d 

111. Unimolecular Decomposition in the 

A. VARIANTS OF THE 

Some confusion has arisen over the treatment of rotations in 
Marcus-Rice RRKM theory. In particular, the meaning of 
the term “centrifugal effects” has been used in various man- 
ners which may be misleading to the casual reader. To examine 
the matter, we present the theory in its chronological develop- 
ment with emphasis on the energetics involved; we employ 
as much of the original notation as is convenient. 

General Pressure Region 

MARCUS-RICE TREATMENT 

I. Treatment of 19.51-19.52 
Marcus and Riceesa laid the groundwork for RRKM theory 
in its present form in 1951-1952. In most respects, the assump- 
tions in RRKM theory are the same as those in ART; in 
both, the reaction rate is proportional to the relative volumes 

(14) 0. K. Rice, “Statistical Mechanics, Thermodynamics and Ki- 
netics,’’ W. H. Freeman and Co., San Francisco, Calif., 1967, pp 499- 
502. (15) E. Tschuikow-Row, J .  Phys. Chem., 72,1099 (1968). 
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of phase space accessible to reactants and activated complexes. 
There is an important distinction, however. Use of “simple” 
ART theory, with no explicit consideration of angular mo- 
mentum as in the more sophisticated t rea tment~ ,~- l~  places 
no restrictions on overall rotations; rotational states of the 
activated complex and the molecule are populated according 
to their equilibrium distribution. In the RRKM theory formal 
explicit restrictions on the rotational states are introduced. 
Based on the reasoning of RG, the quantum number J for 
overall rotations is taken constant during the course of a 
reaction in order to conserve total angular momentum. 

The expression for kuni is 

kuni = 

where the microscopic rate constant for molecules of energy 
E(=E+ + E,)is 

P1+ c P(Ep+) 
(21) 

where E. is the critical energy of reaction and equals the dif- 
ference in zero-point energy of the activated complex and 
molecule (and was denoted in eq 3 as EO). Here we have limited 
ourselves to the conventional condition in which all vibra- 
tional degrees of freedom are active; the inclusion of active 
internal rotational degrees of freedom in either the activated 
complex or excited molecule would necessitate more general 
expressions68 but offers no real complication. At high pressure 
(a+ a) 

E v + S E +  k, = 
PihN*(E+ + E,) 

in agreement with the ART expression (eq 19); and at low 
pressures (w -+ 0) 

exp(-E81kT)~”N*(E+ + E,) exp( - E+/kr> dE+ (23) 
P2 

Pl+/Pl is the ratio of overall rotational, Le., adiabatic, parti- 
tion functions of the complex and the molecule and simplifies 
to a ratio of the square root of moments of inertia of the de- 
grees of freedom concerned, together with the appropriate 
symmetry number ratio. This ratio appears in the total rate 
constant expression (eq 20) for k,,i, and in the expression (eq 
21) fork., the microscopic specific rate constant for molecules 
of active energy E. Thus, in the original limiting forms for 
kuni given by Marcus: (a) as w -P 05, Pl+/Pl remains, as is 
proper; and (b) as w + 0, P1+/P1 cancels out to give a resulting 
expression which can be correct in numerical magnitude only 
when Pl+/Pl = a/al+. It is clear that at high pressure the parti- 
tion function ratio appears for the same reason that it appears 
in the treatment by RG (eq 8) discussed in an earlier section. 
At low pressure, however, the absence of Pl+/Pl in kuni arises 
from its appearance in k,. The rationale for the presence of 
P1+/Pl in k,  is less explicit: it was assumed that an “equilib- 
rium’’ exists between the activated complex and its precursor, 
the excited molecule of internal energy E, and then the intro- 

duction by Marcus of the ratio of partition function P1+/Pl was 
based simply on a reference to the earlier treatment of RG.68 
This application in the present instance is not adequate; 
specific consideration of the composition of the total active 
energy of the activated complex for each state J of the mole- 
cule of internal energy E is needed. 

2. Treatment of 1962 

In 1962, Wieder and MarcusSb revised the expression for k. 
(eq 21) by omitting from P,+/Pl the ratio (Z*+ZB+ZC+/Z~Z~ZC)’/’, 
although leaving the ratio of symmetry numbers which directly 
affect the question of the correct definition of reaction path 
degeneracy. (The ratio of symmetry numbers must appear in 
the expression for k, to ensure that all the dissociative states in 
ZP(E,+) have been counted properly.) Then 

Q1 c P(EV+) 
(24) 

The above expression, however, is not quite complete. The 
energy of the molecule, E+ + E,, does not mesh properly with 
that of the activated complex, E+, except for the case of the 
rigid complex, whose product of moments of inertia is the 
same as that of the molecule, or for the rotationless state (J = 
0). The centrifugal energy of rotating molecules whose product 
of moments increases in the complex configuration will ef- 
fectively reduce the critical energy, E,. 

E v + < E +  k. = 
al+hN*(E+ + Ea) 

3. Treatment of 1965 
In 1965, MarcusSo modified k, in a manner which implicitly 
rectifies the matching of energy levels just mentioned. The 
method is accurate and facile. Figure 3 illustrates how the 
energy levels of the complex were meshed with those of the 
molecule. The figure is similar to that given by Marcus,6c and 
which continued to employ the RG rigid-rotor model, except 
that the energy quantities are superimposed on a potential 
energy diagram. It can be seen that for J = 0, eq 24 is ob- 
tained, since E+ + E. = E. But for J > 0 the active energy 
of the molecule is E = E. + E+ + Ej+ - EJ. However, this 
expression is somewhat misleading because the active energy 
of the molecule, E, is here intermingled with the correspond- 
ing adiabatic or centrifugal energies, EJ and Ej+, although E 
does not in fact depend on J. (Since the active and adiabatic 
degrees of freedom are defined to be orthogonal to each other, 
that is, no energy is allowed to be exchanged between them, 
there would appear to be a contradiction in terms.) Nonethe- 
less, if we take note of the fact that the centrifugal energy is 
being added to the potential energy, then we can interpret the 
Marcus expression as representing the centrifugal energy 
lowering of the critical energy of the rotationless state, called 
here E,, to an effective critical energy, E, + EJ+ - EJ (identi- 
cal with eq 4 in an earlier section). Then kJJ, the specific rate 
constant for a molecule in rotational state J with internal 
energy E, is 

MarcusSc defined a quantity, E* = E+ + E,, to simplify the 
expressions. Such a definition, however, tends to obscure the 
relationship between E and E+ so we have omitted this sub- 
stitution in our expressions. Since the variable in the rate 
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constant integral (eq 20) is E+, we express k, in terms of this 
quantity. An approximate method was employed to average 
~ E J  over all Ss.  First EJ+ and Ej were averaged over all Ss 
and found to be5c (EJ+) = IkT/2 and (EJ) = (Z+/Z)IkT/2, 
respectively, where I is the number of adiabatic rotations under 
consideration (usually I = 2). Next these average values were 
inserted in eq 25 to obtain some average k,. Finally, a factor F 
was introduced to relate eq 24 to eq 25. Define 

As a first approximation, F is constant with increasing E+ at 
the energy in question. The corrected expression for k. is then 

Equation 27 can now be inserted in eq 20 to make calculations 
which take explicit account of centrifugal effects. For example, 
F = 0.8 for ethane decomposition. A typographical error in 
Marcus’ expression for F (eq 26b) has been perpetuated in re- 
cent papers:+’* a plus sign appeared in front of IkT (ref 5c, 
eq 8) instead of the correct minus sign. 

As mentioned above, at high pressure the result for kuni 
is the same as that given previously (eq 22). But now at low 
pressures, w + 0, the result is 

kouui 

E,) exp( - E+/kT) dE+ (28) 

Thus, eq 28 adds a factor F(ZA+ZB+ZC+/ZAZBZC)’” to the original 
formulation for kouui (eq 23). 

4. Remarks 
Various connotations have been attached in the literature to 
the 1952 MR treatment and to the extent to which it correctly 
embodies centrifugal effects.~6a~16-i* It is clear from Table I 
that centrifugal effects do enter correctly into the treatment of 
k muni but not of kouni: the high-pressure rate constant in I is 
unaffected by refinements offered in I1 and 111, but only in 
I11 was the correct (approximate) form of kouni obtained. 

the centrifugal effect is 
larger at p = a than at p = 0 and declines between these 
limits by the factor F ,  which is necessarily less than unity. 

Contrary to several assertions, 

B. MORE EXACT CALCULATIONS 
AT LOW PRESSURE 

Detailed calculations of the centrifugal effect at the high- and 
low-pressure limits have been performed recently by Forst. 19 

(16) M. C. Lin and K. J. Laidler, Can. J.  Chem., 46,79 (1968). 
(17) E.Tschuikow-Roux,J. ChemPhys. ,  49,3115 (1968). 
(18) In ref 16 it is not clear what was done: an incorrect sign was used 
although F was given its conventional magnitude, i.e., less than unity; 
however, the final numerical magnitude of the rate constant given ap- 
pears to be corrected in the right direction. In ref 17 an incorrect sign 
is employed which affects some deductions and description of the CzFs 
system; further comment on this system will be given later. 
(19) W. Forst, J.  Chem.Phys., 48,3665 (1968). 

r- I 
Figure 3. Diagram of energy levels of the molecule and the complex 
superimposed on the potential energy. A slight (fictitious) hump 
is shown at r, in order to lend plausibility to the assumption of a 
constant value of rm, Le., I+, independent ofJ. 

In one approach, a treatment was given that is essentially that 
of RG and expressions of the form of eq 25 were used. At high 
pressure, the conventional contribution to k, was obtained as 
given in eq 8 and 22. 

At low pressure, ku,i, given by Marcus-Rice,60 takes the 
form 

where Eu = E. - EJ + EJ+. A simple analytical form for this 
double integral does not exist. Approximate expressions for its 
evaluation were introduced by Forst so that a computation 
could be made for a case I potential, with constant value of 
I+, by the use of standard integral tables. We prefer a straight- 
forward approach of numerical evaluation of eq 29 after re- 
writing it in alternate form; this is simple and direct, and also 
eliminates some error in the approximations as used by Forst. 
Consider first the case I potential function of Figure 1. The 
critical energy is given by eq 4. The approach is relatively 
straightforward since I+ is not a function of J .  We divide the 
integral in eq 29 for the rate constant into two parts: one in- 
cludes the fraction of molecules in all rotation states with vi- 
brational (internal) energy above E., and the second is the 
portion of molecules with vibrational energy below E. but 
whose centrifugal energy is sufficient to compensate for the 
vibrational energy deficit 

kouni = 

where f ( E )  is the fraction of molecules at active internal 
energy E whose centrifugal energy, Ej - Ej+, makes up the 
“deficit” E, - E. We make the rigid diatomic complex ap- 
proximation again. Then, ignoring constants which cancel, 
the low-pressure centrifugal factor is 

JEk(E)e-E/Xp d E  + N*(E)f(E)e-z’kT d E  

sE::N*(E)e-E/kT d E  
f o  = LE* (29b) 
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Table I 
Interrelation of Centrifugal Factors in Various RRKM Rate Formulations 

I (1952)5" I1 (Z962)6b 111 (196960 

f 

-0 5 IO 15 20 25 

171 
Figure 4. Description of fm and a comparison of 5 calculated from 
eq 33 andfo from ref 19, as a function of PlI. 

Define n E  to be the rotational quantum number such that 

E, - E = (OE(~E + 1)i5z/2)[Z-1 - I+ -I] (30) 

The fraction of all molecules having rotational states 
above nE is 

m 

f(E) = (W + 1) exp[-J(J + 1)h2/2ZkT1/Zr (31) 

On changing the variable in eq 31 from J to J(J + l), integrat- 
ing, and substituting for n~ from eq 30, we have 

J-n, 

f ( E )  = exp[-(E, - E)Z+/U+ - T)kTl (32) 
Equation 32 is then substituted in eq 29b, whence 

f o = l +  

LE'N*(E) exp{[-E - (E, - E)Z+/(Z+ - Z)](kT)-I] d E  

JE:~*(e exp( - E / k n  d~ 

(33) 
Equation 33 can be easily solved numerically for f o  with the 
use of realistic expressionsZo for N*(E). 

In the case for which iV*(E) is constant, e.g., the harmonic 
diatomic molecule, eq 33 may be integrated analytically to 
give the limiting result,l9 fodi = Z+/Z. It is evident that the 
centrifugal effect is independent of pressure for this case. It is 
clear, also, that the Marcus F factor in eq 26 assumes the 
value of unity when N*(E) is constant, so that the same result 

(20) (a) G. Z. Whitten and B. S. Rabinovitch J .  Chern. Phys 41, 1883 
(1964). D. C. Tardy, B. S. Rabinovitch and'G. Z. Whitteni'ibid 48, 
1427 (i968); (b) E. Thiele, ibid., 39,3258'(1963); (c) W. Forst, Z. Piasil, 
and P. St. Lament, ibid., 46,3736 (1967). 

is obtained. Finally, for this special case the magnitude of the 
centrifugal effect is independent of the pressure regime. Since, 
in reality, N(E) declines in general with decrease of E, it fol- 
lows that the maximum value of fo is then constrained to be 
less than fm. 

In the approximations used by ForstI9 for the calculation of 
fo for the case I potential, there is an inaccuracy at relatively 
large values (>IO) of I+/[  which appears in the illustration of- 
fered by him for the case of methyl chloride decomposition: 
fo increases with increase of the ratio Z+/Z and eventually be- 
comes larger than the centrifugal contribution at high pres- 
sure; indeed, it appears to rise asymptotically to infinity at 
Z+/Z - 20 (Figure 4). The present calculations show instead 
that f o  first rises with increasing Z+/Z and then tends to level off 
at a value less thanf,. 

An alternate method for the evaluation of eq 29 was de- 
scribed by Hay and Belford21 using the semiclassical4~5~ 2o ex- 
pression for N*(E). The result forfo was expressed as a double 
sum over a series. The rigorous solution is somewhat onerous, 
and an approximate form was given in terms of an F factor as 

Fb = exp[-(n' - l)(Z+/Z - l)RT/(Es + E, + RT)] (34) 

where n' is the total number of vibrational degrees of freedom 
of the excited molecule and E, is the vibrational zeropoint 
energy; then, fa = FbI+/l. The results using eq 34 agree satis- 
factorily for small values of Z+/Z with those obtained from eq 
33; however, the calculatedfo passes through a maximum with 
increasing Z+/Z at Z+/Z = (E. + E. + RT)/(n' - 1)RT, con- 
trary to the prediction of eq 33. 

A different approximate formula has been derivedz2 by us 
using eq 33 as a starting point and expressing N*(E) again in 
its semiclassical form; the expression is 

F,  = [l + (n' - l)(Z+/Z - l)RT/(E. + uEJI-' (35) 

The factor, a, multiplying Es is the quantum correction to the 
semiclassical densities. 208 

The values of f o  from eq 33 may be compared with those 
from F (Table I), from Fb, and from F,. This we shall do after 
considering a case I1 potential where Z+ should realistically de- 
pend on J. 

For a case I1 potential (Figure 2), a linear relationship be- 
tween n ~ ( n ~  + l) and E, as in eq 30, no longer exists. From 
eq 12 we have instead 

~ I E ( ~ E  + - E , - E =  
21 

It is not feasible to substitute E for nE inf(E) although analytic 
expressions do exist for s = 3, 4, and 6. It is simpler instead to 

(21) A. J. Hay and R. L. Belford, ibid., 47,3944 (1967). 
(22) E. V. Waage and B. S. Rabinovitch, ibid., in press. 
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Table II  

Comparison of Low-Pressure Centrifugal Factors for Ethane Decomposition (T = 600°K) 
Case I potential . --Case I1 p o t e n t i a l p -  

I+/I F F I f / I  Fd+ll FwI+/I f~ (eq 33) fo (es 38) F@/I F d  

1 1.000 1 .oo 1.00 1 .oo 1.00 1.00 1.00 1 .OO 
2 0.850 1.70 1.71 1.72 1.72 1.75 1.72 0.861 
3 0.719 2.16 2.19 2.27 2.26 2.37 2.29 0.763 
4 0.608 2.44 2.49 2.10 2.68 2.86 2.70 0.676 
6 0.432 2.60 2.72 3.34 3.28 3.57 3.17 0.528 
8 0.306 2.45 2.64 3.78 3.69 4.06 3.29 0.411 

10 0.214 2.14 2.41 4.10 3.99 4.40 3.26 0.326 

make a change of variable and solve numerically in a manner 
similar to that used by ForstlB for a case I1 potential. Let x = 
~ z E ( ~ z E  + 1)h2/21 and 

then from eq 36 

If we change the variable in the second integral in the numera- 
tor of eq 29b from E to x, then f(x) = and eq 38 results. 

.fb = 1 - ( l N * ( E a  - x + exp[-(E, - x + 

$BIN*(E)e-E/kT d E  (38) 

The minus sign appears since the limits of integration were 
interchanged; fo is still greater than unity. The upper limit of 
integration is actually finite, but very large, because we dis- 
allow the highly excited rotational states where r, - re in this 
formulation. Minor error results since these higher states 
have low probability; in any event, this artifactual error is 
relatively larger only for the unimportant condition of I+/I 
approaching unity. 

For the purpose of the present critique, calculations were 
performed by using eq 38 with s = 6; good agreement of eq 
33 with eq 38 is obtained if the “apparent” moment of inertia 
I+ = p((rm2))  (eq 15) is used in eq 33. Results of these calcula- 
tions along with a comparison of the several approximations 
to the low-pressure centrifugal factor are illustrated in Table 
I1 for ethane decomposition, CzHc + 2CH8, for a series of 
assumed values of I+/I. The moments of inertia in question 
are with respect to the pair of equal principal axes. 

For small values of Z+/I (Le., from 1 to 4), Marcus’ expres- 
sion, FI+/I, agrees within 10% with fo calculated from eq 33. 
Above a ratio of 4, the agreement rapidly worsens. F, gives 
the best, and very good agreement over the entire range. 
Finally, the agreement between eq 33 and 38 is good (-10%) 
over the entire interesting range of I+/I. 

For the case I1 potential where Z+ depends on J ,  a different 
average over J is necessaryza for calculating an F factor. The 
average rotational energies have been calculated in the section 

on Bimolecular Association (eq 52 and 53). Inserting them in 
eq 26a, we have for the case s = 6 (dispersion force) 

(39) 
N*(E+ + E. - kT[0.7301+/1 - 0.6671) 

F d  = 
N * ( P  + E,) 

Fd  can then be inserted in eq 27 in place of F. On comparing 
FdZ+/I with fo (eq 38) in Table 11, good agreement is found, but 
even better agreement is found between F,I+/I and this fo. 

Since the expressions for F, F,, and F d  are easy to use, we 
wish to establish a rule of thumb for the range of their validity. 
To do so we have compared FIi/I, FdI+/I, and F,I+/I with fo 
from eq 33 (the conclusions with regard to eq 38 are then 
obvious) using classical densities for n (effective) oscillators. 
We use classical densities only for their utility in making com- 
parisons. Figure 5 shows plots of the maximum value of I+/Z 
which can be used in F and F d  for attendant errors of 10%. 
For larger I+/I values, the agreement with eq 33 worsens. A 
curve for Fw does not appear in the figure since the error is 
nowhere as large as 10 % (usually 3 Z or less). 

20 

2 5  Y . .  
r‘. 
U 
c 

I 
I 5 IO 15 20 

NO. of oscillators, n 
Figure 5. Plot of maximum values of Z + / l  on a log scale for a 
molecule having n classical oscillators for which F, or F d ,  give agree- 
ment between FI+/I ,  or FdI+/I,  andfo (eq 33), with an error of 10%. 
A curve for FwIi/I is off the graph since the errors are everywhere 
below 10% (e.g., for I+/I  = 10, the maximum error is 2% at’all 
n, and, by contrast with the behavior shown, the error decreases 
with increase in n). 

In any case, a modified optimum correction factor can be 
found by taking a value to be that which gives ageement with 
fo from eq 33 (and hence also eq 38), i.e., FO = foI/Z+. This 
definition also brings the modified average correction into 
good agreement with the falloff behavior considered next. (23) R. A. Marcus, private communication. 
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Table 111 
Case I Potential. Some Comparison of Falloff (k/km) Calculations for Ethane 

- ,- 
2 -c------4 -, 8 

Fob Exact FO Exact F" Exact Fa 
m p ,  ' 

Torr Exact" 

5 0.999 1.OOO 
4 0.996 0.997 
3 0.976 0.976 
2 0.868 0.869 
1 0.596 0.595 
0 0.266 0.265 

-1 0.0742 0.0738 
-2 0.0142 0.0141 
-3 2.12 x lo-' 2.10 x lo-' 
-4 2.66 X W4 2.64 X lo-' 

Calculated from eq 40. b FO = faI/I+. 

0.999 
0.996 
0.967 
0.838 
0.548 
0.232 
0.0619 
0.0115 
1.69 x 10V 
2.10 x 10-4 

1.000 
0.996 
0.970 
0.848 
0.558 
0.236 
0.0626 
0.0116 
1.69 X 10-8  
2.09 X 1 0 - 4  

0.999 
0.992 
0.951 
0.799 
0.501 
0.204 
0.0529 
9.68 X 10-8 
1.40 x 1 0 - 8  

1.73 x 10-4 

1.000 
0.996 
0.965 
0.828 
0.527 
0.214 
0.0547 
9.86 X 
1.41 X 10-' 
1.73 X lW4 

Table IV 
Case 11 Potentials. Some Comparison of Falloff (klkm) Calculations for Ethane 

0.996 
0.983 
0.928 
0.757 
0.459 
0.181 
0.0462 
8.36 X 10-8 
1.20 x 1 0 - 8  

1.47 x 10-4 

0.999 
0.995 
0.960 
0.812 
0.501 
0.196 
0.0487 
8.60 X 10-8 
1.22 x 1 0 - 8  

1.47 X 1 0 - 4  

- I -  

hgP, - 2 *c___4 8 
Torr Exact0 Fob Exact Fo Exact Fo Exact Fo 

3 0.977 0.976 0.972 0.972 0.964 0.968 0.954 0.963 
1 0.602 0.598 0.565 0.568 0.529 0.540 0.494 0.516 
0 0.271 0.268 0.242 0.244 0.218 0.223 0.197 0.206 

- 1  0.0760 0.0747 0.0652 0.0654 0.0569 0.0580 0.0480 0.0520 
-2 0.0146 0.0143 0.0122 0.0122 0.0104 0.0106 9.07 X 10-' 9.29 X 10-8 
-3 2.18 x lo-* 2.13 X lWa 1.79 X 10-* 1.79 X 10-* 1.51 X 1.52 X 1.30 X 1.32 X 1 0 - 8  

-4  2.76 x 10-4 2.69 x 10-4 2.33 x 10-4 2.23 x 1 0 - 4  1.87 x 10-4 1.87 x 1 0 - 4  1.60 x 10-4 1.61 x 10-4 

or* As in Table 111. 

The remaining discussion will be given in terms of FO rather 
than F,, since Fo is an optimum factor. As a matter of practical 
facility, F, could be employed rather than Fo with only mini- 
mal loss of accuracy. 

C. MORE EXACT CALCULATIONS IN THE 

The centrifugal effect in the falloff pressure regime is more 
difIicult to calculate since there are no simplified expressions; 
a laborious double integration must be performed. The rate 
constantEo is shown in eq 40, where P(J) = (Zr + 1 )  exp- 
( - & / k o / p i .  

FALLOFF REGIME 

X k,,i = exp(-E./kT) 
Pzh 

J o  J o  
dE+dJ (40) 

Rate constants for ethane decomposition at 600'K have 
been calculated using eq 40 for both case I (Figure 1) and case 
I1 (Figure 2) potentials and were compared with those from eq 
20, using both Marcus' F factor (eq 26 and 27) and the im- 
proved factor, Fo = fd/Z+, in k,. Since use of the improved 
factor necessarily yields the same results as eq 40 in both the 
high- and low-pressure limits, present comparisons are re- 
stricted to this factor. Results are shown in Table I11 for a case 
I potential (constant rm), and in Table IV for a case I1 r--6 po- 

tential; k/km is tabulated at different pressures for several il- 
lustrative values of Z+/Z (for the case I1 potential, Z+/Z = 

It is seen that use of the improved Fo factor results in agree- 
ment with eq 40 to within a maximum deviation of 5z at 
intermediate falloff, for Z+/Z as large as 6 for a case I potential 
(Table III), and for Z+/Z as large as 8 for a case I1 potential2' 
(Table IV). Since values of Z+/Z greater than 6-8 are seldom 
encountered, the Fo factor may be used for accurate falloff 
calculations. Although this observation is based on calcula- 
tions with only one model, C 2 H 6 ,  other models are expected 
to behave similarly. Furthermore, the deviation just noted 
does not result in a formal change in the average description 
of falloff behavior. The shapes of falloff curves of log (klk,) 
us. log P are altered slightly by using the FO factor as compared 
with the shapes using eq 40. However, since agreement is re- 
quired for kmuni and for kO,,i there is virtually no change in the 
description of the average behavior so that n, the Slater 
number25 of oscillators, is practically invariant. 

The use of the original Marcus F factor will result in s a -  
lar agreement with eq 40 insofar as it agrees with the FO factor, 
i.e., fo in Table 11. In any case, at high pressure, all treatments 
agree. 

It is important to note that use of an F o r  FO factor in k. (eq 
27) does not change the shape of the log-log falloff curve as 

((rm2))/re3. 

(24) At the limiting low pressures for Z+/I = 2 for a case I1 potential, the 
two sets of values disagree slightly owing to small differences in the 
normalizations used. 
(25). N. B. Slater, "Theory of Unimolecular Reactions," Cornell Uni- 
versity Press, Ithaca, N. Y., 1959, pp 150, 168. 
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compared with the Marcus-Rice original 1951-1952 formula- 
tion. 

The only centrifugal calculations that describe detailed fall- 
off behavior (k/kmuni us. p )  appear to be those of Tschuikow- 
Roux17 for C2F8 decomposition. The Marcus F factor was 
used, but because of an incorrect sign in the equation, his 
value of F was greater than unity (4.89 by our estimate) and 
consequently the centrifugal effect was computed to be much 
larger at the low-pressure limit than at high pressure. In addi- 
tion, in this calculation an incorrect moment of inertia ex- 
pression was applied to the evaluation offo, a value of -140 
was apparently used, and a very large incorrect pressure dis- 
placement was generated. By using eq 33 (since Marcus’ F 
factor is inaccurate for the large ratio Z f i I  ‘v 5 used), a more 
correct value off0 of only 1.88 is found. The centrifugal effect 
corrections are very much less than was concluded by Tschui- 
~OW-ROUX. 

IV. Activation Energy Considerations 

In general, the centrifugal effect contributes to the observed 
Arrhenius activation energy EA for unimolecular reactions 
only to a small extent. 

At high pressure, there is no effect on the activation energy 
for a case I potential but there is for a case I1 potential. Since 
((rm2)), and hence kmuni, varies as (kT)-2/’ (eq 15), then a term 
(2/s)kT is subtracted from the case I value of EA-. It is evident 
that the statement made above that all reaction rate models 
give the same result for kmuni, wherein the factor Z+/Z appears, 
is correct insofar as the proper value of I+ is used. The latter 
is perhaps more appropriately written as Z+(T) for the case 
I1 potential inasmuch as Z, which is temperature dependent 
only in the sense of failure of the conventional rigid rotor 
model of the molecule, shows much weaker temperature de- 
pendence. 

At the low-pressure limit, there will also be a small activa- 
tion energy effect for both case I and I1 potentials. There is no 
simple analytical form for this effect for a case I1 potential, 
but expressions have been given by Hay and Belford21 for 
a case I potential; one approximate form obtained by them 
with use of Fb was 

Our expression for F,  leads to an improved result 

Values obtained from eq 41 and 42 for various assumed values 
of Z+/Z are compared with an “exact” result for ethane de- 
composition obtained by taking -d In fo/d(l/RT) where fo  is 
found from eq 33. Good agreement (-0.01 kcal) is found be- 
tween the exact results and those from eq 42 (Table V). 

The negative sign of AEOA (rot) means that the measured acti- 
vation energy is lowered relative to the value that would obtain 
if I+ = I .  

Equation 42 can also be used for a case I1 potential insofar 
as fo (case 11) would be expected to mimic the temperature 
dependence off0 (case I). 

Table V 

Contribution to the Arrhenius Activation Energy from. . 
Overall Rotations at Low Pressure for Ethane Decomposlbon 

-AE0n (rot)r kcal mole-- 
I+/ [  Exact” Eq 410 Eq 42“ 

2 0.25 0.29 0.25 
3 0.42 0.59 0.42 
4 0.55 0.88 0.55 
6 0.72 1.47 0.73 
8 0.84 2.05 0.85 

10 0.94 2.64 0.94 
a Average of AEOA~,,~) at 600” (873.2’K). 

V. Bimolecular Association 
at High Pressure 

A. CROSS SECTIONS 

The bimolecular association rate constant for the reverse of 
unimolecular decomposition can be related to its unimolecular 
counterpart through the equilibrium constant: Ke9 = k,,i/kbi. 
If kbi is cast into the simple collision form 

(43) 
kbi = u(?) ?rkT ‘I1 exp(-EJkT) 

where E, is a critical threshold value of relative translational 
energy parallel to the line of centers and u is the collision diam- 
eter (hard sphere), then it can be shown*a that the moment of 
inertia of the activated complex for the unimolecular decom- 
position is given by 

I+ = pu’ (44) 
Use of a hard-sphere collision diameter implies use of a case 
I potential. We thus identify u with the ART activated com- 
plex distance rm (Figure 1) given by Z+ = prm2. 

Even more striking is the correspondence6-* between colli- 
sion theory and ART for a case I1 potential. We follow the 
treatment by Yang and Ree6 in presenting an analysis of the 
two theories with emphasis on the cross sections obtained. 

Using eq 9 as the form of the attractive potential between 
two molecules, the critical impact parameter, b,(g), as a func- 
tion of total relative velocity, g, is 

(45) bdg) = [A(s - 2)/jLg2]”8[s/(s - 2)]’” 

The reaction cross section is ?rbc2; if it is multiplied by gh(g), 
where h(g) is the distribution function of relative velocities, 
and averaged over all g, we have the bimolecular rate constant 
(ignoring symmetry numbers) 

kbi = crboz(g)gh(g)  dg (46) 

When eq 46 is equated with eq 43 without the exponential in- 
volving the critical energy, Le. 

then Yang and Ree showed that 

(47) 

where ((r,2)) is the apparent ART distance between activated 
complex mass centers (eq 15). Thus, the formal analogy be- 
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tween simple collision theory and ART is extended to include 
cases where more complex potentials are used. 

The above derivations are based on high-pressure conditions 
where the equilibrium assumption can be made. For centrifu- 
gal effect calculations of kbi in the falloff or low-pressure re- 
gime, the relationship kbi = kUni/Keq can be used along with 
the expressions for kuni developed earlier in this paper. 

B. ROTATIONAL ENERGIES FOR A 

Some interesting aspects of average rotational energies are 
now considered. The energies are derived for bimolecular 
reactions using the diatomic molecule approximation, but 
the equilibrium results apply also to the reverse unimolecular 
decompositions. We continue to employ the symbol EJ for 
rotational energy even though the averaging will be over im- 
pact parameters, b, and relative velocities, g. 

CASE I1 POTENTIAL 

The rotational energy at r = r, is 

EJ = pgzbz/2rm2 (49) 
When averaged over all g and b and normalized by kbi, then 

(EJ)r-rm = ~ l b c ( ' ) E ~ 2 T ~ b h ( g )  dbdgikbi = kT (50) 

To obtain (EJ+),  the average rotational energy at the acti- 
vated complex distance above the zero of energy (at infinite 
separation between the colliding species), it is necessary to add 
to (Ej) ,dm the average potential energy at r = r,  

(v(rm)> = 

Then from eq 50 and 51 

(EJ+) = [(s - 2 ) / ~ ] k T  (52) 

= 0.667kT, for s = 6 

To determine (EJ), the average rotational energy at r = re, an 
average of Ej = pg2b2/2reZ is taken in a manner similar to 
that in eq 50 and 51 

= hkT((rmz))/rez 

= 0.730kTI+/Z, for s = 6 

where 

5 = ( s+2)r( 'e)/[ r( s+2)]z (54) 

Here f. < 1, as opposed to the result for a case I potential 
where (EJ) = kTrmzJre2 = kTI+JI (for two degrees of free- 
dom, i.e., I = 2). Also the value of (EJ+) given by eq 52 for a 
case I1 potential is less than the corresponding value (EJ+) = 
kT for a case I potential. 

These distinctions are necessary if calculations involving 
rotational energies are made. For example, BensonZ6 has made 

(26) S. W. Benson, J.  Amer. Chem. Soc., 91,2152 (1969). 

calculations of the rotational energy of ethane (from methyl 
radical recombination) based on a hard-sphere model (case I 
potential). But as seen above, such a calculation yields an 
overestimate for both (EJ+) and (EJ)  if there is no critical 
energy for the association, so that a case I1 potential is indi- 
cated. 

Alternative to eq 52 and 53, the rotational energies aver- 
agedZa over J are conveniently interrelated as shown in eq 
55, where Vetf is given in eq 2 .  

(G+) - (EJ)  = 

VI. Glossary of Symbols 

A attractive potential constant 
b impact parameter 
bok) critical impact parameter at relative velocity g 
Ea, EO equivalent symbols for the critical energy (the 

activation energy at OOK) of dissociation 
Eo0 same as Eo for overall rotational quantum 

state J 
E&), EJ, EJ+ overall rotational energy at the separations 

between mass centers of r = r, re, and rm, 
respectively 

energy of the active vibrations (and internal 
rotations when included) in the activated 
complex 

same as Ea except for reverse association reac- 
tion 

energy of the active modes of the excited mole- 
cule and the activated complex in excess of 
their zeropoint energies, respectively 

principal moment of inertia for the excited 
molecule and the activated complex, re- 
spectively 

moment of inertia of the excited molecule and 
the activated complex, respectively, along 
the X axis. 

specific microscopic rate constant 
Unimolecular rate constant at general, high, 

and low pressures, respectively 
bimolecular rate constant 
same as k. but for rotational state J 
same as kmuni but for rotational state J 
number of overall rotational degrees of free- 

dom taken as adiabatic (usually I = 2) 
density of states of active modes of the excited 

molecule at energy E 
partition functions of the adiabatic modes of 

the excited molecule and of the complex, 
respectively 

partition functions of the active modes of the 
excited molecule and of the complex, re- 
spectively 

normalized probability of rotational state J 
distance between mass centers during the 

equilibrium value of r in the excited molecule 
course of a reaction 
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rm 

Ul, Ul+ 

value of r in the activated complex configura- 
tion 

apparent (not average) square of rm for the 
case where r, depends on J 

sum of states of active modes of the activated 
complex at energy E+ 

symmetry numbers for adiabatic rotation of 
the excited molecule and activated complex, 
respectively 

z r ,  zr+ 

w 

symmetry numbers of all other rotations 
attractive potential 
effective attractive potential, including the 

rotational potential Veff(r) = V(r) + EJ(r) 
overall rotational partition functions of the 

excited molecule and the activated complex, 
respectively 

specific collision rate per unit time 


